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Abstract. A strength of model checking is its ability
to automate the detection of subtle system errors and
produce traces that exhibit those errors. Given the high-
computational cost of model checking most researchers
advocate the use of aggressive property-preserving ab-
stractions. Unfortunately, the more aggressively a system
is abstracted the more infeasible behavior it will have.
Thus, while abstraction enables efficient model checking
it also threatens the usefulness of model checking as a de-
fect detection tool, since it may be difficult to determine
whether a counter-example is feasible and hence worth
developer time to analyze.

We have explored several strategies for address-
ing this problem by extending an explicit-state model
checker, Java PathFinder (JPF), to search for and ana-
lyze counter-examples in the presence of abstractions.We
demonstrate that these techniques effectively preserve
the defect detection ability of model checking in the pres-
ence of aggressive abstraction by applying them to check
properties of several abstracted multi-threaded Java pro-
grams. These new capabilities are not specific to JPF and
can be easily adapted to other model checking frame-
works; we describe how this was done for the Bandera
toolset.
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1 Introduction

In the past decade, model checking has matured into
an effective technique for reasoning about realistic com-
ponents of hardware systems and communication pro-
tocols. The past several years have witnessed a series
of efforts aimed at applying model checking techniques
to reason about software implementations (e.g., Java
source code [11, 15, 33]). While the conceptual basis for
applying model checking to software is reasonably well-
understood, there are still unsettled questions about
whether effective tool support can be constructed that
allows for realistic software requirements to be checked
of realistic software descriptions in a practical amount
of time. Most researchers in model checking believe that
property-preserving abstraction of the state-space will be
necessary to make checking of realistic systems practi-
cal (e.g., [8, 14, 26]). There are a variety of challenges in
bringing this belief to reality. This paper addresses one
of those challenges, namely, the problem of automating
the analysis of counter-examples that have been produced
from abstractmodel checks in order to determine whether
they represent real system defects.

The work described in this paper involves the integra-
tion of two recently developed tools for model checking
Java source code: Bandera [11] and Java PathFinder [33].
Bandera is a toolset that provides automated support for
reducing a program’s state space through the applica-
tion of program slicing and the compilation of abstract
definitions of program data types. The resulting reduced
Java program is then fed to JPF which performs an op-
timized explicit-state model check for program properties
(e.g., assertion violations or deadlock). If the search is free
of violations then the program properties are verified. If
a violation is found the situation is less clear. Bandera
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uses abstractions that preserve the ability to prove all
paths properties (e.g., such as assertions or linear tem-
poral logic formulae). To achieve state space reduction,
however, the ability to disprove such properties is sacri-
ficed. This means that a check of an abstracted system
may fail either because the program has an error or be-
cause the abstractions introduce spurious executions into
the program that violate the property. The former are of
interest to a user, while the latter are a distraction to the
user, especially if spurious results occur in large numbers.

Safe abstractions often result in program models
where the information required to decide conditionals is
lost and hence nondeterministic choice needs to be used
to encode such conditionals (i.e., to account for both true
and false results). Nondeterministic choice is also used
in the implementation of abstract operations, to model
the lack of knowledge about specific abstract values.
Such abstractions are safe for all paths properties since
they are guaranteed to include all behaviors of the unab-
stracted system. The difficulty lies in the fact that they
may introduce many behaviors that are not possible. To
sharpen the precision of the abstract model (by eliminat-
ing some spurious behaviors) one minimizes the use of
nondeterminism and it can be shown that the absence of
nondeterminism equates to feasibility [31].

Several approaches have been proposed recently for
analyzing the feasibility of counter-examples of abstracted
transition-systemmodels [3, 7, 23]. While our work shares
much in common with these approaches, it is distin-
guished from them in four ways: (i) it treats the abstrac-
tion of both the program’s data and the property to be
checked; (ii) the feasibility of a counter-example is judged
against the semantics of a real programming language;
(iii) we advocate multiple approaches for analyzing feasi-
bility with different cost/precision profiles; and (iv) our
work is oriented toward detecting defects in the pres-
ence of abstraction. Our work makes a contribution by
adapting counter-example analysis techniques developed
in simplified settings to support the analysis of systems
written in modern programming languages. Concretely
we have enhanced JPF with two new capabilities. JPF
can now perform a state-space search that is bounded
by nondeterministic-choice operations; a property vio-
lation that lies within this space has a counter-example
that is deterministic and is hence feasible. JPF can also
perform simulation of the concrete program guided by
an abstract counter-example; if a corresponding concrete
program trace exists then the counter-example is feasible.
An important contribution of our work is that we provide
convincing evidence that these techniques are effective
in detecting feasible counter-examples under aggressive
abstraction. We report the results of analyzing counter-
examples produced from model checks of properties of
seven non-trivial multi-threaded Java programs.

While our presentation focuses on tools for abstract-
ing and model checking of Java programs, it is important
to note that the approach developed here is not specific

to Java or to JPF. To illustrate this, we describe how we
enhanced the Bandera toolset to implement the choice-
bounded search using the Spin [21] model checker.

Section 3 presents our approach for abstracting Java
programs using nondeterminism. Section 4 describes the
two techniques for analyzing program counter-examples
that were added to JPF and their adaptation to Ban-
dera. Section 5 describes several defective Java applica-
tions whose counter-examples were analyzed using these
techniques. In Sect. 6 we discuss related work and we con-
clude in Sect. 7. In the next section, we give some brief
background on Bandera and JPF.

2 Background

2.1 The Bandera tool-set

Bandera [11] is an integrated collection of program an-
alysis and transformation components that allows users
to selectively analyze program properties and to tailor
the analysis to that property so as to minimize analy-
sis time. Bandera exploits existing model checkers, such
as Spin [21] and JPF [33], to provide state-of-the-art an-
alysis engines for checking program-property correspon-
dence.

To bridge the gap from Java to model checker input
language Bandera is organized much like an optimizing
compiler. Java programs are translated to intermediate
representations that are amenable to different kinds of
program analyses and transformations. A typical series of
analyses and transformations is as follows:

1. Compilation of Java is performed using traditional
parsing and semantic analysis techniques. The result
of this process is a 3-address representation of the pro-
gram at the level of granularity of Java Virtual Ma-
chine (JVM) byte-codes [25]; the specific representa-
tion used is Jimple provided by the SOOT compilation
framework [32]. The property to be checked is trans-
lated from the Bandera Specification Language [9]
(BSL) into a form that refers to Jimple variables and
locations.

2. Program slicing automates the elimination of program
components that are irrelevant for the property under
analysis. Slicing criteria are automatically extracted
from the observable predicates that are referenced in
the property. Our Java slicer treats multi-threaded
programs [20] and is based on calculation of the pro-
gram dependence graph.

3. Data abstraction automates the reduction in size of
the data domains over which program data range [18]
by replacing implementation types (e.g., an integer)
with abstract types (e.g., that records the sign of the
integer value). A user identifies fields of Java classes
that appear relevant to the property being checked
(e.g., those that are referenced in the BSL specifica-
tion) and selects abstract types for those fields. A type
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inference algorithm is applied to calculate a consistent
set of abstract types for the rest of a program’s data.
This type-based approach to abstraction is a special-
ized form of predicate abstraction (e.g., [4, 5, 34]). It
is restricted to non-relational predicates, but has the
advantage of allowing operations on abstract types to
be calculated once and reused in abstracting different
programs.

4. Jimple simplifications are applied to perform tra-
ditional compiler optimizations that may reduce
the state space (e.g., calculation of variable live-
ness information, local name packing, and method
inlining).

5. Transition system generation converts the resulting
sliced, abstracted, and simplified Jimple representa-
tion to a model checker independent transition system
notation called BIR (Bandera Intermediate Represen-
tation). BIR is essentially a guarded-assignment lan-
guage that includes support for object-oriented fea-
tures, such as, the definition of collections of struc-
tures for representing heap-allocated data and the
definition of locks and wait sets that can be associ-
ated with structure instances. BIR also provides sup-
port for determining the visibility of each transition
relative to the specification being checked and col-
lapsing consecutive invisible transitions into atomic
steps.

6. Model checker input generation defines representa-
tions for BIR types and implementations of BIR
guards and assignments. This translation is greatly
simplified due to the fact that the majority of BIR’s
constructs map almost directly to constructs found in
model checker input languages, such as Promela (the
input language of Spin). The object-oriented features
of BIR (e.g., support for collections, locks, and query-
ing the inheritance hierarchy) require more care in
translating. The generated model is checked by invok-
ing the appropriate tool.

7. Counter-example display is invoked when a violation
of the property is detected. The low-level counter-
example is mapped back to a sequence of BIR tran-
sitions. A simulator for BIR allows for moving for-
ward and backward through the counter-example and
querying values of BIR state components, which are
mapped back to Java variables and instances for dis-
play to the user.

We discuss data abstraction in more detail in Sect. 3 and
the adaptation of the final three steps of this process to
treat abstract counter-examples in Sect. 4.

2.2 Java PathFinder

Java PathFinder [33] is a model checker for Java pro-
grams that can check any Java program, since it is built
on top of a custom made JVM. JPF’s companion tool [34]
implements predicate abstraction for programs written in
Java.

In JPF special attention is paid to reducing the
memory usage, rather than execution speed as is typ-
ical of commercial JVMs, since this is the major effi-
ciency concern in explicit-state model checking. Users
have the ability to set the granularity of atomic steps
during model checking to: byte-codes, source lines (the
default) or explicit atomic blocks (through calls to
beginAtomic() and endAtomic() methods from a spe-
cial class called Verify). To model nondeterministic
behavior, a special method is called that the model
checker will trap during execution. A JPF counter-
example indicates how to execute code from the initial
state of the program to reach the error. Each step in
the execution contains the name of the class the code
is from, the file the source code is stored in, the line
number of the source file that is currently being exe-
cuted, a number identifying the thread that is execut-
ing and if the executed code involved a nondetermin-
istic choice it also includes which choice was made.
Using only thread numbers and nondeterministic choice
numbers in each step JPF can simulate the erroneous
execution.

Recent enhancements to JPF include both the add-
ition of new capabilities as well as improvements in im-
plementation (and therefore performance). JPF now sup-
ports temporal logic property checking in Linear Time
Temporal logic (LTL) in addition to the default mode
where it checks for deadlocks and user-defined assertions.
Furthermore, new heuristic search capabilities have been
added (for deadlock and assertion checking only) that
allows breadth-first search (BFS) where all the succes-
sor states of the current state are put into a priority
queue depending on a user-specified heuristic function
(default heuristic is BFS). For example, when search-
ing for a deadlock in a Java program one might specify
a heuristic that will favor exploration of states in which
more threads are blocked, since the more threads are
blocked the closer one should be to a state where all
threads are blocked (i.e., a deadlock).

JPF is integrat ed with Bandera after step 4 of
Sect. 2.1. The Jimple representation of the program can
either be converted directly to byte-codes or decompiled
to Java which is then compiled to byte-codes.

3 Program abstraction

Given a concrete program and a property, the strategy
of verification by using abstraction involves: (i) defining
an abstraction mapping that is appropriate for the prop-
erty being verified and using it to transform the concrete
program into an abstract program; (ii) transforming the
property into an abstract property; (iii) verifying that the
abstract program satisfies the abstract property; and fi-
nally (iv) inferring that the concrete program satisfies the
concrete property. In this section, we summarize founda-
tional issues that underlie these steps.
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4 C.S. Păsăreanu et al.: Finding feasible abstract counter-examples

3.1 Data abstraction

The abstract interpretation (AI) [12] framework as de-
scribed in a large body of literature establishes a rigorous
semantics-based methodology for constructing abstrac-
tions so that they are safe in the sense that they over-
approximate the set of true executable behaviors of
the system (i.e., each executable behavior is covered
by an abstract execution). Thus, when these abstract
behaviors are exhaustively compared to a specification
and found to be in conformance, we can be sure that
the true executable system behaviors conform to the
specification.

We present an AI, in an informal manner, as: a domain
of abstract values, an abstraction function mapping con-
crete program values to abstract values, and a collection
of abstract primitive operations (one for each concrete
operation in the program). Substituting concrete opera-
tions applied to selected program variables with corres-
ponding abstract operations of an AI yields an abstract
program [8].

For example, to abstract from everything but the fact
that integer variable x is zero or not one could use the
signs AI [1] which only keeps track of whether an integer
value is negative, equal to zero, or positive. The abstract
domain is the set of tokens {neg, zero, pos}. The abstrac-
tion function maps negative numbers to neg, 0 to zero,
and positive numbers to pos . Abstract versions of each of
the basic operations on integers are used that respect the
abstract domain values. For example, an abstract version
of the addition operation for signs is:

+abs zero pos neg

zero zero pos neg
pos pos pos {zero, pos,neg}
neg neg {zero, pos,neg} neg

Abstract operations are allowed to return sets of values
to model lack of knowledge about specific abstract values.

public class Signs {

public static final int NEG =0;

public static final int ZERO=1;

public static final int POS =2;

public static int abs(int n) {

if (n < 0) return NEG;

if (n == 0) return ZERO;

if (n > 0) return POS;

}

public static int add(int a, int b) {

int r;

Verify.beginAtomic();

if (a==NEG && b==NEG) r=NEG;

else if (a==NEG && b==ZERO) r=NEG;

else if (a==ZERO && b==NEG) r=NEG;

else if (a==ZERO && b==ZERO) r=ZERO;

else if (a==ZERO && b==POS) r=POS;

else if (a==POS && b==ZERO) r=POS;

else if (a==POS && b==POS) r=POS;

else r=Verify.choose(7);

Verify.endAtomic();

return r;

}

}

Fig. 1. Java Representation of signs AI (excerpts)

This imprecision is interpreted in the model checker as
a nondeterministic choice over the values in the set. Such
cases are a source of “extra behaviors” introduced in the
abstract model due to its over-approximation of the set of
behaviors of the original system.

3.2 Property abstraction

When abstracting properties, Bandera uses an approach
similar to [22]. Informally, given an AI for a variable x

(e.g., signs) that appears in a proposition (e.g., x>0),
we convert the proposition to a disjunction of propo-
sitions of the form x==a, where a are the abstract
values that correspond to values that imply the truth
of the original proposition (e.g., x==pos implies x>0, but
x==neg and x==zero do not; it follows that proposition
x>0 is abstracted to x==pos). Thus, this disjunction
under-approximates the truth of a concrete proposition
insuring that the property holds on the original pro-
gram if the abstracted property holds on the abstract
program.

3.3 Abstraction implementation

In Bandera, generating an abstract program involves the
following steps: the user selects a set of AIs for a pro-
gram’s data components, then type inference is used
to calculate the abstractions for the remaining program
data, then the Java class that implements each AI’s ab-
straction function and abstract operations is retrieved
from Bandera’s abstraction library, and finally the con-
crete Java program is traversed, and concrete literals and
operations are replaced with calls to classes that imple-
ment the corresponding abstract literals and operations.

Figure 1 shows excerpts of the Java representation of
the signs AI. Abstract tokens are implemented as inte-
ger values, and the abstraction function and operations
have straightforward implementations as Java methods.



�MS ID: STTT0088

17 June 2002 10:36 CET
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For Java base-types, the definitions of abstract opera-
tions are automatically generated using a theorem prover
(see [18] for details). Nondeterministic choice is specified
by calls to Verify.choose(bits), which JPF traps dur-
ing model checking and returns nondeterministic values
between the abstract values encoded in the bit-vector
bits. Specifically, Verify.choose(7) denotes a non-
deterministic choice between the values NEG, ZERO and
POS. Abstract operations execute atomically (via calls
to Verify.beginAtomic() and Verify.endAtomic())
since they abstract concrete byte-codes (e.g.,
Signs.add() abstracts iadd).

4 Finding feasible counter-examples

We have seen in the previous section that, if a specifica-
tion is true for the abstracted program, it will also be true
for the concrete program. However, if the specification
is false for the abstracted program, the counter-example
may be the result of some behavior in the abstracted pro-
gramwhich is not present in the original program. It takes
deep insight to decide if an abstract counter-example is
feasible (i.e., corresponds to a concrete computation).

We have developed two techniques that automate
tests for counter-example feasibility: model checking on
choose-free paths and abstract counter-example guided
concrete simulation.

4.1 Choose-free state space search

We have enhanced a model checker with an option to per-
form an adaptive depth-bounded search that backtracks
whenever an instruction that introduces nondeterminism
is encountered (i.e., a Verify.choose() call). The ap-
proach exploits the result from [31, Theorem 5], which
states that every path in the abstracted program where all
assignments are deterministic has a corresponding path in
the concrete (unabstracted) program.

The result is a corollary of the fact that if an ab-
stract system is deterministic, then it is equivalent to
the concrete system (i.e., there is a simulation equiva-
lence between the concrete and abstract systems). The
result in [31] is stated for predicate abstraction applied
to programs described as guarded-assignment transition
systems where only the assignments may be nondeter-
ministic as a result of abstraction. The theorem applies
to our approach since: (i) predicate abstraction subsumes
type-based abstraction, where the abstract domain is fi-
nite [31]; and (ii) Java programs can be modeled by
a guarded-assignment transition system enriched with
types for modeling object references, locks, and wait-
sets [25] (this is what Bandera’s BIR model does).1 As

1 The statement of [31, Theorem 5] requires also that no loss of
precision is introduced by abstracting the properties. We are inter-
ested here only in determining path feasibility, and for this purpose
the property under consideration is irrelevant (see also Sect. 4.4).

discussed in Sect. 3, our abstraction approach introduces
nondeterminism in expression evaluation; consequently
both assignments and conditionals may be nondetermin-
istic. Compiling Java to a byte-code representation effec-
tively “normalizes” a program by adding Boolean tempo-
rary variables for all the expressions in conditionals, thus
insuring that in the abstracted program, only the assign-
ments may be nondeterministic as a result of abstraction.

Intuitively, the evaluation of an abstract operation
is deterministic (i.e., its implementation does not refer
to choose instructions), if its outcome is a unique ab-
stract value. A transition (or assignment) is deterministic
if all evaluated operations are deterministic, while a path
is deterministic if it involves only deterministic transi-
tions. For every deterministic transition in the abstract
program, there is a corresponding transition in the con-
crete program; hence, every deterministic abstract path
has a corresponding path in the concrete program. For
example, consider assignment x=x+1; in some concrete
program, where the initial value of variable x is 0, and
assume that we decide to abstract x with signs. The ab-
stracted assignment is deterministic, since +abs applied
to zero and pos is deterministic, and its unique outcome
is pos; for the corresponding abstracted transition that
changes the state of x from zero to pos, there is a con-
crete transition, that changes the value of x from 0 to 1.
Assume now that the (concrete) initial value of x is −1.
Then, the corresponding abstracted assignment is non-
deterministic, and its outcome may be zero, pos or neg .
For a corresponding abstract transition that changes the
value of x from neg to pos or from neg to neg, there is no
concrete transition.

Säıdi uses [31, Theorem 5] to judge a counter-example
feasible and drive abstraction refinement, whereas we use
it to bias the model checker to search for feasible counter-
examples. By construction, the sub-space explored by
this search constitutes a deterministic abstract model of
a portion of the concrete program’s behavior. The theo-
rem ensures that paths that are free of nondeterminism
correspond to paths in the concrete program. A more
general definition of deterministic paths can be found
in [13]; we should also note that determinism corresponds
to completeness in abstract interpretation (see e.g., [19]),
which states that no loss of precision is introduced by
the abstraction. It follows that if a counter-example is
reported in a choose-free search then it represents a feas-
ible execution. If this execution also violates the property,
then it represents a feasible counter-example.

Consider an abstracted program whose state space is
sketched in Fig. 2. Black circles represent states where
some assertion is violated. Dashed lines represent tran-
sitions that refer to choose, while solid lines refer to in-
structions other than choose. Model checking on choose-
free paths will report only the error path 1-3-6, although
path 1-2-4 leads to a state where the assertion is false
(and it may correspond to an execution in the concrete
program).
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State space searched

2 3

54 6

1

Fig. 2. Model checking on choose-free paths

To illustrate this more concretely, consider check-
ing the fragment of code on the left of Fig. 3 against
the assertion at line [4], where initially Global.done is
false; the abstracted code (using signs for i) is shown
to the right of the original. In the abstracted pro-
gram, nondeterminism is introduced through method
Signs.lt() that implements the abstract operation
for integer <. After one pass through the while loop,
the abstract value of i becomes pos and the value re-
turned by Signs.lt(i,Signs.POS) can be either true
or false. However, the abstract program does expose
a choose-free counter-example: if the thread that is
an instance of AThread executes line [6] before the
main thread begins the execution of the while loop,
the assertion in line [4] is violated when the body of
the loop is executed for the first time (and the ab-
stract value of i is zero). This counter-example does
not contain nondeterministic choices since the value re-
turned by Signs.lt(i,Signs.POS), when i is zero, is
uniquely true.

class App {

public static void main(...) {

[1] new AThread().start();

...

[2] int i=0;

[3] while(i<2) {

...

[4] assert(!Global.done);

[5] i++;

}

}

}

class AThread extends Thread {

public void run() {

...

[6] Global.done=true;

}

}

class App {

public static void main(...) {

[1] new AThread().start();

...

[2] int i=Signs.ZERO;

[3] while(Signs.lt(i,Signs.POS)) {

...

[4] assert(!Global.done);

[5] i=Signs.add(i,Signs.POS);

}

}

}

class AThread extends Thread {

public void run() {

...

[6] Global.done=true;

}

}

Fig. 3. Simple example of concrete (left) and abstracted (right) code

4.1.1 JPF Implementation

Our technique could be implemented in any model
checker, but the design of JPF made these modification
particularly easy. JPF is essentially a special-purpose
JVM that interprets each byte code in the compiled
version of a Java program. Since choose operations are
represented as static method calls, trapping and process-
ing those operations specially only required modification
of the code for the static method invocation byte-code.
Specifically, whenever the next instruction to be executed
in a thread is a choose method call, this thread is consid-
ered not to be enabled. We made sure that the search on
choose-free paths does not introduce deadlocks (choose
instructions are interpreted as infinite self-loops).

We also implemented a choose-free heuristic search
within JPF. This heuristic favors exploration from states
that have the least number of nondeterministic choice
statements currently enabled. This has the effect of try-
ing to explore the choose-free state-space before explor-
ing parts of the state-space that requires a choose state-
ment (i.e., nondeterministic choice) to be executed. Note
that unlike in the previous choose-free search described,
here the exploration does not stop when no choose-free
path is found, but continues to explore the whole ab-
stract state-space. It is however easy to detect when
a counter-example produced during a heuristic search is
choose-free or not by just checking whether any choose
statements were executed on the path. Consider again
the abstracted program whose state space is sketched in
Fig. 2. During choose-free heuristic search, JPF first ex-
plores the state space that is bounded by the transitions
that introduce nondeterminism (so it will report the same
error path 1-3-6). Once all choose-free path prefixes are
considered without finding a counter-example, the algo-
rithm proceeds to explore the rest of the state space. This
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means that, in Fig. 2, if the only erroneous state would
have been state 4, JPF would have discovered it (and it
would have reported error path 1-2-4). The only draw-
back to this heuristic search is that storing the states that
comprise the frontier of the choose-free subspace can be
expensive.

4.1.2 Bandera implementation

Bandera represents choose operations as explicit BIR op-
erators. The implementation of a BIR ChooseExpr de-
pends on the model checker being targeted. For example,
an assignment to a local variable, x, of Boolean typed
ChooseExprwould be implemented in Promela as:

if

:: true -> x = 0;

:: true -> x = 1;

fi;

When a choose-free search is desired the implementation
of ChooseExprs is modified to force the thread executing
the choose into a self-loop. This causes the model checker
to explore extensions of the trace in other threads. For
example, the assignment above would be implemented in
Promela as:

loc: goto loc;

This basic strategy can be used in any of the model check-
ers that we have studied.

4.2 Abstract counter-example guided concrete simulation

In Bandera, the generation of an abstracted program is
automatic and is done in such a way that there is a clear
correspondence between the concrete and abstracted pro-
gram: for each line in the concrete program, there is a sin-
gle line in the abstracted program. Since byte-codes ex-
ecute atomically, for each “concrete” byte-code, there is
a set of “abstract” byte-codes that execute atomically.
This property of Bandera abstraction, together with the
fact that all Java variables have known initial values, al-
lows for simulation of the concrete program based on an
abstract counter-example.

This is done by executing the steps in the abstract
trace. For clarity, we discuss the simulation in terms of the
execution of lines of Java source code, but simulation can
also be performed at a finer level (e.g., byte-code). Each
step contains information about the thread to be run next
and the line of the counter-example. At each step of the
concrete execution, we check that the concrete line to be
executed corresponds to the abstract line in the counter-
example. If the lines match throughout the simulation
then the abstract trace is feasible, otherwise, the abstract
trace is spurious. To check whether the feasible trace is
a counter-example, we have also to check if it violates the
property.

Consider again the example from Fig. 3 where the
result of model checking the abstracted program is

a counter-example where Global.done is set true after
the loop in the main thread is executed two times. This
means that the assertion is reachable (and violated) by
the (abstract) trace

[1]-[2]-[3]-[4]-[5]-[3]-[4]-[5]-[3]-[4]

in the main thread. While this is clearly possible in
the abstract program (since, after the abstract value of i
becomes pos, the condition at line [3] can be nondeter-
ministically true or false), it is not possible in the concrete
program. To see this, we simulate the steps from the ab-
stract trace on the concrete program: after executing the
loop two times, the value of i is 2 so the exit condition of
the loop is true and the loop is exited. At this point a line
mismatch is detected and the simulation stops.

It is possible to detect the infeasibility of an abstract
trace earlier, using a technique similar to forward analysis
(e.g., [7]). During simulation at each step on the concrete
program, we check the correspondence between concrete
and abstract values. This can be done by abstracting the
values of variables (e.g., via calls to Signs.abs()) in the
concrete simulation and comparing them to the abstract
values in the counter-example.

Our simulation technique works because we analyze
programs that do not exchange data with their environ-
ment and Java defines default initial values for all data
(thus a program has a single initial state). More general
simulation techniques, that handle multiple initial states,
are discussed in Sect. 6.

4.2.1 JPF Implementation

In simulation mode JPF can execute a pre-determined
path by looking at which thread is executing and the
nondeterministic choice taken by the thread (if one ex-
ists). Steps in the path contain additional information,
such as the class name and line number of the execut-
ing thread, that can be used to determine the execution
context. When executing the concrete system using the
error-path generated from analysis of the abstract sys-
tem we check whether the class name and line number
expected by the error path is matched by the execution in
the system. A mismatch indicates that the abstract path
is not feasible in the concrete system. Since JPF states
store variable values explicitly it is easy to extend the
checking of abstract/concrete state correspondence to in-
clude data; this requires the abstraction functions (e.g.,
Signs.abs() from Fig. 1).

4.2.2 Bandera implementation

As mentioned in Sect. 2 Bandera includes a simulator for
systems represented in BIR. Assuming location corres-
pondence between the original and abstracted program,
as above, Bandera’s transition system generation phase
will produce BIR for the original and abstracted program
whose locations correspond. The original BIR simulator
assumed that a sequence of transitions was available to
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drive the simulation, consequently there was no provision
for determining the enabled transitions in a state and se-
lecting from them. To determine feasibility of the abstract
BIR trace, we modified the simulator so that at each state
in the abstract trace we can:

– determine which concrete BIR transitions are en-
abled;

– detect whether the next abstract BIR transition cor-
responds to one of those transitions;

– if not, then the abstract counter-example is infeasible;
– otherwise, the concrete simulation is extended by the

corresponding transition.

BIR states store variable values explicitly so, as with JPF,
extending checking of abstract/concrete state correspon-
dence to include data is straightforward.

4.3 Methodology

Our methodology for model checking and abstraction
involves the integration of the above two techniques
as illustrated in Fig. 4. The input (concrete) program
and the specification are abstracted (using abstrac-
tions from Bandera’s library) as described in Sect. 2
and the transformed program is fed to a model checker.
If the result of model checking is true, then the spe-
cification is true for the concrete program. If the re-
sult is false, we rerun the model checker to search only
choose-free paths in the model. If the model checker
finds a choose-free counter-example, it is reported to
the user otherwise we perform counter-example guided
simulation. If the simulation succeeds, a counter-example
is reported, but if a mismatch is detected then ab-
stractions need to be refined. The refinement involves

(abstraction)

Bandera Guided Simulation

(JPF)

Program & Property

Counter-example

Counter-example

True

True

Refine selections

Mismatch

Abstract program
& property

Property true! Property false!

counter-example
Abstract

Model Check(JPF)
Choose-free

Model Check(JPF)

Fig. 4. Model checking and refinement

[1] x=1;

[2] y=x+1;

[3] assert(x<y);

[1] x=Signs.POS;

[2] y=Signs.add(x,Signs.POS);

[3] assert((x==Signs.NEG && y==Signs.ZERO) ||

(x==Signs.NEG && y==Signs.POS) ||

(x==Signs.ZERO && y==Signs.POS));

Fig. 5. Example of spurious error introduced by property abstraction

modifying the selection of abstractions guided by the
counter-example reported in the first run of the model
checker. For a discussion of abstraction refinement, see
Sect. 6.

We note that using JPF’s choose-free heuristic search
has the advantage that we do not have to run the model
checker twice to get a result. This changes the methodol-
ogy above in the following way. The abstracted program
is fed to a model checker, to perform choose-free heuris-
tic search. If the result is true, then the specification is
true for the original program. If the result is false and the
counter-example is choose-free, then it is reported to the
user; otherwise, we perform the counter-example guided
simulation.

4.4 Discussion

In general, the result of model checking an abstract
program is false either because the concrete program
does not satisfy the property (in which case the counter-
example is feasible and indicates a real defect), or because
the abstraction is not suitable for checking the property.
In the latter case, the abstract counter-example can be
one of the following:

not feasible due to over-approximation of the behavior
of the concrete program (e.g., the spurious counter-
example of the program in Fig. 3).

feasible but not defective due to under-approximation of
the property to be checked.

The latter case is illustrated by the code in Fig. 5, where
both x and y are abstracted to signs. The predicate in the
assertion is abstracted in such a way that if the assertion
is true in the abstracted program, it follows that it is true
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in the concrete program. Abstract trace [1]-[2]-[3] vi-
olates the assertion, since after step [2], both x and y are
pos. However, in the concrete program, the assertion is
true.

In our experience this second case is rare, since in
Bandera users are guided to make abstraction selections
that are able to decide both the truth and falsity of the
propositions used in the property to be checked. Only
when such a selection is impossible is it necessary to
check whether the feasible counter-example is defective
or not.

We note that both choose-free model checking and ab-
stract counter-example guided concrete simulation can be
directly applied to an executable program slice. If a trace
is feasible in the sliced program, it is also feasible in the
original program [20]. We also note that the techniques
presented here can be applied for checking safety proper-
ties expressed in any universal temporal logic.

4.5 Abstraction and nondeterminism

When building safe abstractions, we use explicit non-
determinism (i.e., special instructions to be interpreted
by verification tools as nondeterministic choice). We also
use explicit nondeterminism when modeling the environ-
ment in which a program executes. For example, during
our analysis of the DEOS kernel presented in Sect. 5, we
used nondeterminism to model the behavior of the ker-
nel’s environment, which consists of the user applications
running on the kernel and the hardware. We distinguish
(syntactically) (i.e., we use two different special instruc-
tions) between internal nondeterminism, introduced by
data abstractions to model lack of knowledge about ab-
stracted variable values, and external nondeterminism,
introduced because of the lack of knowledge about the en-
vironment in which a program executes.

Implicit nondeterminism is used to model the pos-
sible decisions that a thread scheduler would make. Ana-
lyzing concurrent systems requires safe modeling of the
possible scheduling decisions that are made in executing
individual threads. Since software is often ported to oper-
ating system’s with different scheduling policies, a prop-
erty checked under a specific policy would be potentially
invalid when that system is executed under a different
policy. To address this, the approach taken in existing
model checkers is to implement what amounts to the most
general scheduling policy (i.e., nondeterministic choice
among the set of runnable threads). Properties verified
under such a policy will also hold under any more restric-
tive policy. Fairness constraints are supported in most
model checkers to provide the ability to more accurately
model realistic scheduling policies (e.g., by eliminating
starvation). The Java language has a relatively weak spe-
cification for its thread scheduling policy. Threads are
assigned priorities and a scheduler must ensure that “all
threads with the top priority will eventually run” [2].
Thus, a model checker that guarantees progress to all

runnable threads of the highest priority will produce only
feasible schedules; JPF implements this policy.

The choose-free search technique is set to be bounded
only by the internal nondeterminism introduced by data
abstraction. This means that during choose-free search,
a model checker analyzes a program’s behavior that may
be nondeterministic because of the thread scheduler or
the environment (but not because of data abstraction).

5 Experience with defective Java applications

To illustrate the potential benefits of the techniques de-
scribed in the previous section, we applied them to several
small to medium-size multi-threaded Java applications.
These applications used both lock synchronization and
condition-based synchronization (i.e., wait/notify).

The systems are: RAX (Remote Agent experi-
ment) [34], a Java version of a component extracted
from an embedded spacecraft-control application, Pipe-
line [10], a generic framework for implementing multi-
threaded staged calculations, RWVSN, Lea’s [24]
generic readers-writers synchronization framework,
DEOS [28, 34], the scheduler from a real-time execu-
tive for avionics systems that was translated from C++,
BoundedBuffer [27], a bounded buffer implementation
in Java that is amenable to simultaneous use by multiple
threads, NestedMonitor [27], a version of the bounded
buffer implementation that uses semaphores instead of
Java condition-based synchronization, and Replicated-
Workers [17], a parameterizable parallel job scheduler.

The following table gives some basic measures of the
size of the system; SLOC stands for the number of source
lines of code.

Program SLOCClassesThreads

RAX 55 4 3
Pipeline 103 5 5
RWVSN 590 5 5
DEOS 1443 20 6
BoundedBuffer 127 5 5
NestedMonitor 214 6 3
ReplicatedWorkers 954 11 5

Most of these programs use a rich set of Java features and
concurrency constructs, including abstract classes, inher-
itance, and java.util.Vector.

The RAX, DEOS, BoundedBuffer, and Nested-
Monitor examples had known errors that we checked
for. For the Pipeline,RWVSN and ReplicatedWork-
ers examples we seeded faults in the program. For ex-
ample, we dropped a negation (!) in two programs and
changed <= into < (simulating an off-by-one error) in the
other. It is interesting to note that not all seeded faults
could be detected given the properties we checked for,
so we altered the faults until we generated a property
violation. In our experiments, we encoded the proper-
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ties to be checked as assertions (rather than temporal
logic formulae), in order to use JPF’s new heuristic-search
capabilities.

5.1 Description of experiments

We now describe several model checks for the abstracted
systems and the automated analysis of the resulting
counter-examples. Figure 6 gives the data for each of
the model checking runs, using JPF to perform choose-
free search, depth-first search, breadth-first search, and
choose-free heuristic search. For each run, we report
the abstraction that was used, the size of the counter-
example, the total of user and system time to execute
the checking and the memory used in verification. All
model checks were performed on a SUN ULTRA5 with
a 270MHz UltraSparc IIi and 512MB of RAM. The re-
sults are slightly different from [29], due to the use of
the updated (and improved) version of the JPF tool. Full

Program Choose-free Depth-first Breadth-first Choose-free
search search search heuristic search

RAX(signs) Size: 30 103 30 30
Memory: 2.5M 2.3M 2.5M 3M
Time: 12.3 s 12.4 s 11.8 s 11.4 s

RAX(even-odd) Size: None found 72 30 30
Memory: 2.8M 4.4M 8.6M
Time: 12.7 s 13 s 16.9 s

Pipeline(signs) Size: 55 55 22 22
Memory: 2.2M 67.1M 1.6M 1.6M
Time: 11 s 3:22.3 s 10.8 s 10.9 s

RWVSN(signs) Size: 70 27056 64 64
Memory: 11.7M 182.9M 91M 94.8M
Time: 49.2 s 11:29.6 s 4:17.4 s 4:18.4 s

DEOS(signs) Size: 192 294 Out of memory Out of memory
Memory: 317.8M 228.2M
Time: 19:38.5 s 11:59.5 s

BoundedBuffer(signs) Size: None found 5303 56 56
Memory: 43.3M 159.7M 128.9M
Time: 1:29.5 s 7:29.7 s 5:54.6 s

BoundedBuffer(range(0..1)) Size: 353 5918 56 56
Memory: 19.4M 57.6M 53.5M 30.6M
Time: 2:46 s 3:51 s 5:12.7 s 1:23. s

NestedMonitor(signs) Size: 22 111 22 22
Memory: 1.9M 1.5M 711.1k 1.6M
Time: 23.3 s 6.7 s 5.5 s 3.1 s

ReplicatedWorkers(signs) Size: 423 423 Out of memory Out of memory
Memory: 3.6M 3.6M
Time: 27.1 s 27.8 s

Fig. 6. Data for experimentsCEb

details for the examples and model checks are available
at [16].

5.1.1 RAX

We model checked the RAX example to detect dead-
locks using two different abstractions. Figure 7 shows
excerpts from the original and the generated abstract
Java program. The abstraction of the programwas driven
by our selection that the Event.count field should be
abstracted with signs. Bandera’s abstraction type in-
ference determined that the local count variables in
the FirstTask.run()method should also be abstracted,
since there are two event objects allocated; this amounts
to four abstracted variables in the system.

Running JPF (using depth-first search) on this ab-
stracted system detects a deadlock and produces a 103-
step counter-example. Analysis of this counter-example
reveals that it is spurious. After 35 steps in the counter-

CE
b By ‘M’ and ‘k’ in this figure do you mean ‘Mb’ and ‘kb’,

respectively ? Please confirm if this is the case.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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[ 1] class Event {

[ 2] int count=0;

[ 3] public synchronized void wait_for_event() {

[ 4] try{wait();}

[ 5] catch(InterruptedException e){};

}

[ 6] public synchronized void signal_event() {

[ 7] count = count + 1;

[ 8] notifyAll();

}

}

[ 9] class FirstTask extends Thread {

[10] Event event1,event2;

[11] int count=0;

[12] public void run() {

[13] count = event1.count;

[14] while (true) {

[15] if (count == event1.count)

[16] event1.wait_for_event();

[17] count = event1.count;

[18] event2.signal_event();

}

}

}

[19] class SecondTask extends Thread {

[20] Event event1,event2;

[21] int count=0;

[22] public void run() {

[23] count = event2.count;

[24] while (true) {

[25] event1.signal_event();

[26] if (count == event2.count)

[27] event2.wait_for_event();

[28] count = event2.count;

}

}

}

[ 1] class Event {

[ 2] int count = Signs.ZERO;

[ 3] public synchronized void wait_for_event() {

[ 4] try {wait();}

[ 5] catch(InterruptedException e){};

}

[ 6] public synchronized void signal_event() {

[ 7] count = Signs.add(count,Signs.POS);

[ 8] notifyAll();

}

}

[ 9] class FirstTask extends Thread {

[10] Event event1,event2;

[11] int count = Signs.ZERO;

[12] public void run () {

[13] count = event1.count;

[14] while (true){

[15] if (Signs.eq(count,event1.count))

[16] event1.wait_for_event();

[17] count = event1.count;

[18] event2.signal_event();

}

}

}

[19] class SecondTask extends Thread {

[20] Event event1,event2;

[21] int count=Signs.ZERO;

[22] public void run() {

[23] count = event2.count;

[24] while (true) {

[25] event1.signal_event();

[26] if (Signs.eq(count,event2.count))

[27] event2.wait_for_event();

[28] count = event2.count;

}

}

}

Fig. 7. RAX Program with deadlock (excerpts)

example the trace reaches the conditional at line 15.
In the real system, the branch condition is false, but
due to the nondeterminism of Signs.eq() for posi-
tive parameters the abstract system enters the condi-
tional. JPF is able to find a 30-step choose-free counter-
example. Running JPF using the heuristic searches
(i.e., both breadth-first search and choose-free heuris-
tic search) discover the same counter-example (also 30-
steps long). We ran JPF in simulation mode guided by
this 30-step counter-example and it was shown to be
feasible.

It is clear that the presence of spurious counter-
examples is closely related to the property being checked,
the program and the abstraction’s selected. We reran our
model checks changing the abstraction for Event.count
field to record information about the evenness or oddness
of its values. This produced a 72-step counter-example
(using depth-first search) and a 30-step counter-example
(using both heuristic searches), but JPF was unable to
find a choose-free counter-example. At this point, we ran
JPF in simulationmode guided by the 72-step and the 30-
step counter-examples and while these counter-examples
did contain nondeterministic choices, they were shown to
be feasible.

5.1.2 Pipeline

The Pipeline example consists of an application that
uses the methods of a Pipeline class to manage exe-
cution of a multi-threaded staged computation. The ap-
plication constructs and starts execution of a pipeline,
calls stop() to end execution of the pipeline, and calls
add() to provide input to the computation. We model
checked a precedence property for the Pipeline system
stating that “no pipeline stage (i.e., thread) will ter-
minate until the stop method is called”. We encoded
this using a Boolean variable, stopCalled, set to true
when the stop() method had been called and embedded
assert(stopCalled)at the return point of the stage run
methods.

This example was abstracted by identifying a loop
index variable that controlled the number of times the
add() method was called and abstracting it to signs.
Type inference determined that five additional fields
and local variables also needed abstraction. JPF found
a choose-free counter-example that is similar to the ex-
ample in Fig. 3 in that it occurred on the first iteration
of an abstracted loop. We ran JPF in simulation mode
to analyze the counter-examples produced during depth-
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first search and the heuristic searches, and they were
shown to be feasible.

5.1.3 RWVSN

RWVSN consists of an application that extends Lea’s
RWVSN class [24] to implement an object with a readers-
writers synchronization policy. That object is then shared
by several threads that read and write through the RWVSN
interface.We checked that access by a reader excluded ac-
cess by a writer by setting a Boolean variable, in_writer,
in the writer’s critical section and resetting it upon exit,
and embedding assert(!in_writer) in the reader’s crit-
ical section.

Abstraction was applied to three integer fields of
the RWVSN class abstracting them to signs. JPF found
a choose-free counter-example; the counter-example pro-
duced during depth-first search was analyzed and found
not feasible, while the counter-examples produced during
heuristic searches were shown to be feasible.

5.1.4 DEOS

The DEOS real-time scheduling kernel has been the
subject of several recent case studies in model checking
code [18, 28, 34]; we performed the abstraction and analy-
sis as described in [18]. The property being checked is an
assertion that encodes a test for time partitioning in the
scheduler component of the system. We used JPF to de-
tect a subtle implementation error related to the kernel’s
time partitioning requirement that was originally discov-
ered and fixed during the standard formal review pro-
cess. That requirement is that “application processes are
guaranteed to be scheduled for their budgeted time dur-
ing a scheduling unit”. The requirement was encoded as
a method that observes the state of the kernel and asserts
that budgets are allocated in each scheduling unit. Calls
to this method are inserted whenever the kernel sched-
ules an application process; this guarantees the detection
of property violations. To analyze the DEOS kernel, addi-
tional code was written to simulate the behavior of user
applications and the hardware environment (e.g., a tick
generator thread simulates a hardware clock for time re-
lated processing in the kernel). We modeled the environ-
ment using explicit external nondeterminism.

We used dependence analysis driven by the location
of the assert statement and the data values it referenced
to identify a single field (out of 92) as influencing the
property. We selected the signs AI for that field and type
inference determined that two more fields should be ab-
stracted. Checking the property on the abstracted system
detected a choose-free counter-example (i.e., a counter-
example that does not contain internal nondetermin-
ism introduced by the abstraction). The counter-example
found using depth-first search turned out to be feas-
ible when simulated. JPF ran out of memory during the
heuristic searches.

5.1.5 BoundedBuffer

The BoundedBuffer program uses a synchronization
object that monitors the access to a bounded buffer into
which producer threads put items and consumer threads
get items. The monitor class maintains an array of ob-
jects, two indices into that array representing the be-
ginning and the end of the active segment of the array
and a counter of the items stored into the buffer. A con-
stant SIZE defines the maximum number of items that
may be stored in the buffer. Calls to put items into the
buffer are guarded by a check for a full buffer using the
Java conditional wait/notify idiom; calls to get items
into the buffer are guarded similarly by a check for an
empty buffer. As in [27], we ignored the details of what
items are stored in the buffer and how these items are
stored.

We analyzed an instance of the problem with two
producer and two consumer threads. The abstraction of
the program was driven by our selection that the con-
stant SIZE should be abstracted with signs. Bander-
a’s abstraction type inference determined that variable
count, that stores the number of items currently stored
in the buffer, should also be abstracted. Running JPF
(using depth-first search) on this abstracted system de-
tects a deadlock and produces a counter-example; an-
alysis of this counter-example reveals that it is spurious.
No choose-free counter-example were found. Using the
heuristic searches, JPF found counter-examples that were
shown to be feasible.

We reran our model checks changing the abstrac-
tion for SIZE with range(0..1) abstraction [18], which
tracks concrete values 0 and 1, but abstracts the values
less than 0 and greater than 1, by using the set of to-
kens {below0 , zero, one, above1}; this produced a choose-
free counter-example. We ran JPF in simulation mode
guided by the counter-example produced using depth-
first search and it was shown to be not feasible; the
counter-examples reported by the heuristic searches were
found to be feasible.

5.1.6 NestedMonitor

The NestedMonitor program is an implementation of
the bounded buffer that may deadlock because of nested
monitor calls. We analyzed an instance of the program
with one producer thread and one consumer thread.

As with the previous example, we abstracted the con-
stant SIZE (that records the number of items that are
stored in the buffer) using signs. Checking the abstracted
system yielded feasible counter-examples with each of the
techniques.

5.1.7 ReplicatedWorkers

The ReplicatedWorkers system is a parameterizable
job scheduler, where the user configures the computation
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to be performed in each job, the degree of parallelism
and several pre-defined variations of scheduler behavior.
An instance of this framework is a collection of similar
computational elements, called workers. Each worker re-
peatedly accesses data from a shared work pool, processes
the data, and produces new data elements which are re-
turned to the pool. Users define the number of workers,
the type of work data, and computations to be performed
by a worker on a item. We checked for proper termina-
tion (i.e., that the computation can not terminate unless
the work pool is empty or a worker signals termination).
We encoded this with an assertion that uses a variable,
GlobalDone, set to true when a worker thread signals ter-
mination. To analyze the framework, additional code was
written to simulate the behavior of a driver that invokes
the framework’s operations and of stubs that implement
the work done by workers. Similar to DEOS, we modeled
the environment using explicit external nondeterminism.

The signs abstraction was applied to the variable that
stores the number of work items in the pool. Checking the
abstracted system yielded a choose-free counter-example.
The counter-example reported by the depth-first search
was found to be infeasible and during heuristic searches,
JPF ran out of memory.

5.2 Discussion

While these programs represent a range of different pat-
terns of concurrency (e.g., clients and server, pipelines,
and peer-groups) and the larger examples are real ap-
plications, we do not claim that our results generalize
to a broader class of multi-threaded Java programs. We
do, however, believe the results suggest that the counter-
example analysis techniques we have developed have
merit and can significantly reduce the burden users face
when analyzing counter-examples from checks of ab-
stracted systems.

There are three criteria that we believe are relevant
when considering the effectiveness of the techniques pre-
sented in this paper: guarantees of counter-example fea-
sibility, length of counter-example, and memory/time re-
quirements of the analysis.

The data clearly show that counter-examples can be
reduced significantly in length with respect to depth-first
search; this alone makes it easier to diagnose the program
fault. Choose-free search and both heuristics are effective
in finding such short counter-examples. In some cases, the
heuristics are more effective in reducing counter-example
length. This is due to the fact that choose-free search
operates depth-first in the subspace bounded by choose
operations.

While breadth-first search can produce shorter
counter-examples than choose-free search, they are not
guaranteed to be feasible. This is why we investigated
the choose-free heuristic, which is a hybrid of the two
that performs a breadth-first traversal of the subspace
bounded by choose operations. The price of the heuristic

searches is that they explicitly store the search frontier,
unlike the depth-first searches. This can lead to signifi-
cant memory consumption, depending on the problem.
For the two largest examples we considered, DEOS and
ReplicatedWorkers, these searches exhausted mem-
ory while choose-free search completed successfully. More
experiments with large software systems is needed to un-
derstand the relative effectiveness of choose-free search
and its heuristic variant.

We believe that the guarantee of feasibility is im-
portant since it will focus the user’s attention on only
those counter-examples for which analysis will lead to
fault detection. In general, one would prefer a shorter
feasible counter-example to a longer one. Another pos-
sible variation of choose-free search that is guaranteed
to produce the shortest choose-free counter-example,
as the heuristic search does, but without the cost as-
sociated with a breadth-first traversal is to perform
an exhaustive depth-first search of the choice bounded
sub-space recording the shortest counter-example en-
countered and overwriting it when a shorter one is
found.

We note that the heuristic searches can be used only
for checking for assertion violations and for deadlock,
while choose-free search can be used when checking prop-
erties written in temporal logic.

Finally, we observe that choose-free search can be an
effective way to exploit more aggressive abstraction ap-
proaches. The application of source-level predicate ab-
straction techniques to theDEOS andRAX is described
in detail in [34]. In that work a predicate abstraction
and an invariant for DEOS and four different predicate
abstractions for RAX were used to produce abstract
models that preserved both truth and falsity of the prop-
erties being checked. In contrast, the checks described in
this paper sacrifice precision for more aggressive abstrac-
tion, and state-space reduction, while choose-free search
enables the recovery of feasible counter-examples.

6 Related work

In our previous work [18], we focused on the specifica-
tion, generation, selection and compilation of abstrac-
tions for Java programs. In this paper, we detail tech-
niques for analyzing counter-examples and provide ev-
idence for their usefulness on several non-trivial Java
programs.

The abstractions we use correspond to free abstrac-
tion relations from [14]. When looking only at the choose-
free paths, the model checker examines (on-the-fly) paths
that under-approximate the behavior of the concrete pro-
gram. These paths correspond to the ones introduced by
constrained abstraction relations [14]. Both free and con-
strained abstractions are used to build mixed transition
systems for model checking full CTL. We use these ab-
stractions in a different way: free abstract transitions for



�MS ID: STTT0088

17 June 2002 10:36 CET
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verifying properties and constrained abstract transitions
when looking for defects.

Most existing work on counter-example analysis
(e.g., [3, 7, 23, 30, 31]) is oriented towards the goal of
verification; counter-example analysis drives abstraction
refinement for the purpose of proving a property. In con-
trast, our work is oriented toward defect detection, and
we view the integration of our work with abstraction re-
finement techniques as an interesting research topic for
the future. Our biasing of the model checker yields a com-
plete coverage of the sub-space of guaranteed feasible
paths in the system rather than simply assessing the feasi-
bility of a single counter-example from an unbiased model
check.

The simulation technique from [7] can handle pro-
grams with multiple initial states and it uses forward an-
alysis to perform a symbolic simulation of the concrete
system using predicates that characterize the program
data values. Unlike our simulation technique, the method
from [7] does not keep a correspondence between con-
crete and abstract transitions; hence, rather than deter-
mine the next concrete state, it must compute (at each
step of the simulation) the set of all possible next con-
crete states. This method, which is implemented in the
symbolic model checker NuSMV [6], is dependent on the
computability of the inverse of the abstraction function
and also on the decidability of whether a set of states
is empty or not. Similar restrictions apply to the ap-
proaches presented in [23, 30], where theorem proving is
used to rule out spurious counter-examples. Backward
analysis, that computes pre-images of the violating ab-
stract state over the given trace, is used to obtain infor-
mation to refine the abstractions. In SLAM [3], sequential
C programs are abstracted into Boolean programs (pro-
grams in which variables and procedure parameters are
always Boolean). Feasibility of abstract counter-examples
is checked using symbolic execution, in which a heuris-
tic decision procedure is used to try and decide whether
the abstract path is feasible or not. Unlike our approach,
these tools and techniques are not concerned with prop-
erty abstraction.

We note that, although we set our presentation in the
context of Bandera’s abstraction, other forms of data ab-
straction, like JPF’s predicate abstraction, would also be
treated properly. By that we mean that a path through
the predicate abstracted code that is choose-free or that
can be mapped to a concrete execution is feasible.

7 Conclusion

In this paper, we have suggested several approaches for
finding feasible abstract counter-examples when model
checking software. These include adaptations of state
space search algorithms to focus on the choose-free sub-
space and abstract counter-example guided simulation of
the concrete program.

Based on experimentation with an implementation of
these techniques in a Java model checking tool we have
found the combination of techniques to be capable of
detecting guaranteed feasible counter-examples in every
case. This enables users to apply aggressive abstractions
to their programs to speed analysis without sacrificing
the ability to detect errors.

Our approach treats both abstraction of program data
and the property to be checked. Furthermore, it takes into
account the differences between abstraction in the envi-
ronment and abstraction in the system under analysis.
Thus, our approach is well-adapted to finding errors in
real software.

We have demonstrated that choose-free search and
abstract counter-example guided concrete simulation are
not tightly bound to a particular model checking frame-
work by adapting them from JPF to Bandera.

Finally, we believe that our light-weight counter-
example analysis techniques can be combined with other
counter-example analysis methods to provide a suite of
methods that vary in cost and in their ability to precisely
analyze counter-examples.
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